Acta Crystallographica Section E

Structure Reports

Online

Poly[bis($\mu_{4}-1,4$-benzenedicarboxylato)(μ_{6}-succinato)digadolinium(III)]

ISSN 1600-5368

Chun-Xiang Wang* and Zhi-Feng Li

School of Materials \& Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China

Correspondence e-mail: jxwchx@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.017$
$w R$ factor $=0.044$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

A new three-dimensional coordination polymer with the formula $\left[\mathrm{Gd}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right]_{n}$ has been synthesized by hydrothermal synthesis. The coordination polyhedron around each Gd atom is a distorted square antiprism; the antiprisms are bridged into a three-dimensional network by the 1,4 benzenedicarboxylate and succinate ligands. The succinate ion is located on a centre of inversion.

Comment

Variable coordination numbers (6-12) and geometries are observed in lanthanide complexes. Thus, the design of molecular architectures with predetermined structures is difficult (Drew, 1977; Reineke et al., 1999). The rigid or semirigid polycarboxylate receptors may help to control the coordination sphere according to the lock-and-key and induced-fit concepts (Piguet \& Bünzli, 1999). We have chosen the rigid aromatic 1,4-benzenedicarboxylate (BDC) and the saturated aliphatic succinate as ligands, to synthesize a ternary lanthanide coordination polymer with an open framework, $\left[\mathrm{Gd}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right]_{n}(\mathrm{I})$.

(I)

As illustrated in Fig. 1, the Gd^{3+} ion is coordinated in a distorted square antiprismatic geometry by four O atoms from four BDC and four from three succinate ions. The $\mathrm{Gd}-\mathrm{O}$ bond distances range from 2.2723 (16) to 2.5654 (16) \AA. In this structure, the succinate ligand is located on a centre of symmetry. Two carboxylate O atoms chelate one Gd atom and each O atom bridges another Gd atom with a $\mathrm{Gd} \cdots \mathrm{Gd}$ separation of 4.106 (2) \AA. In this mode, the Gd atoms are bridged into one-dimensional infinite GdO chains along the [010] direction. A two-dimensional polymeric sheet is formed via bridging succinate ligands. The two-dimensional sheets are parallel to the $a b$ plane and are bridged into a three-dimensional framework by BDC ligands. Is is noteworthy that one of

Received 27 September 2005 Accepted 30 September 2005 Online 8 October 2005
the carboxylate groups of the BDC ligand bridges two adjacent Gd atoms in the same chain (O 3 and O 4), while the other carboxylate group (O 1 and O 2) bridges two Gd atoms from neighbouring chains.

Experimental

A mixture of $\mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad(1.00 \mathrm{mmol}, 0.37 \mathrm{~g})$, 1,4-benzenedicarboxylic acid ($0.55 \mathrm{mmol}, 0.09 \mathrm{~g}$), succinic acid $(0.51 \mathrm{mmol}$, $0.06 \mathrm{~g}), \mathrm{NaOH}(2.00 \mathrm{mmol}, 0.08 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{ml})$ was heated in a 23 ml stainless steel reactor with a Teflon liner at 443 K for 48 h . The colourless column-like crystals were filtered and washed with water and acetone (yield: 55%, based on Gd).

Crystal data

$\left[\mathrm{Gd}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right]$
$M_{r}=758.80$
Orthorhombic, Pbca
$a=13.9094$ (9) £
$b=6.8497$ (5) \AA
$c=21.8148(14) \AA$
$V=2078.4(2) \AA^{3}$
$Z=4$
$D_{x}=2.425 \mathrm{Mg} \mathrm{m}^{-3}$

```
Mo \(K \alpha\) radiation
Cell parameters from 128
reflections
\(\theta=3.3-26.7^{\circ}\)
\(\mu=6.40 \mathrm{~mm}^{-1}\)
\(T=291\) (2) K
Plate cut from column, colourless \(0.17 \times 0.15 \times 0.08 \mathrm{~mm}\)
```


Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.344, T_{\text {max }}=0.605$
11172 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.044$
$S=1.06$
2491 reflections
155 parameters
H -atom parameters constrained

2491 independent reflections 2303 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-12 \rightarrow 18$
$k=-9 \rightarrow 9$
$l=-28 \rightarrow 27$

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0233 P)^{2}\right.
$$

$+2.0093 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=0.83 \mathrm{e}_{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\min }=-1.29 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 Extinction coefficient: 0.00185 (9)

Table 1
Selected bond lengths (\AA).

$\mathrm{Gd}_{2}-\mathrm{O} 2^{\mathrm{i}}$	$2.2723(16)$	$\mathrm{Gd}_{\mathrm{i}}-\mathrm{OS}^{\text {iv }}$	$2.4341(19)$
$\mathrm{Gd}-\mathrm{O} 1$	$2.3305(15)$	$\mathrm{Gd}^{\text {iii }}$	O^{v}

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x+\frac{3}{2},-y+2, z-\frac{1}{2}$; (iii) $x,-y+\frac{3}{2}, z-\frac{1}{2} ;$ (iv) $-x+\frac{3}{2}, y+\frac{1}{2}, z ;$ (v) $-x+\frac{3}{2}, y-\frac{1}{2}, z$.

Figure 1
The coordination environment of the Gd atom, with the atom-numbering scheme, showing displacement ellipsoids drawn at the 45% probability level. [Symmetry codes: (i) $1-x, 2-y, 1-z$; (ii) $\frac{3}{2}-x, 2-y, z-\frac{1}{2}$; (iii) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (iv) $\frac{3}{2}-x, \frac{1}{2}+y, z ;$ (v) $\frac{3}{2}-x, y-\frac{1}{2}, z ;$ (vi) $2-x, 2-y, 1-z$.]

H atoms were included at calculated positions and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The deepest hole is located $0.84 \AA$ from atom Gd.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This project was supported by Jiangxi Provincial Educational foundation (grant No. 2005-146) and Jiangxi University of Science and Technology foundation (grant No. 2003-1).

References

Bruker (1998). SMART, SAINT and SHELXTL. Versions 5.16. Bruker AXS Inc., Madison, Wisconsin, USA.
Drew, M. G. B. (1977). Coord. Chem. Rev. 24, 179-275.
Piguet, C. \& Bünzli, J.-C. G. (1999). Chem. Soc. Rev. 28, 347-358.
Reineke, T. M., Eddaoudi, M., Fehr, M., Kelley, D. \& Yaghi, O. M. (1999). J. Am. Chem. Soc. 121, 1651-1657.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

